Pleural Effusions: a case-based review

Scott Schissel, MD, PhD
Chief, Department of Medicine
Brigham and Women’s Faulkner Hospital

Division of Pulmonary and Critical Care Medicine
Brigham and Women’s Hospital

Assistant Professor of Medicine
Harvard Medical School
Scott Schissel, MD, PhD

- Columbia University, College of Physicians and Surgeons
- Medicine Residency @Brigham and Women’s Hospital
- Pulmonary and Critical Care Fellowship @Harvard Combined Program (BWH, MGH, BIDMC)
- Assistant Professor of Medicine@ HMS
Disclosure

• None
Outline

• Normal pleural anatomy and function
• Mechanisms of pleural fluid accumulation
 – Transudates vs. Exudates
• Evaluating pleural effusions
 – Imaging
 – Thoracentesis
 – Pleural fluid analysis
• Diagnosis and management of common exudative effusions
• Evaluating the exudative effusion of unknown etiology
Normal Pleural Anatomy

- Basal pleural fluid volume: \(\sim 2.0 \text{ ml/hr} \)
 - Daily production: \(\sim 25 \text{ ml/day} \)

- Drainage capacity: \(\sim 15 \text{ ml/hour} \)
 - Daily absorption: \(\sim 350 \text{ ml/day} \)
First Case

- 67 year old man with dyspnea and cough x 2 months
- Exam: poor chest excursion on the R with absent BS
- US of the R chest: small pleural effusion
- Pleural Fluid Analysis:
 - PF protein 3.9 (serum 7.9)
 - LDH 200 (serum 250)
 - Glucose 98
 - pH 7.48
 - GS, Cultures AFB smear NEG
 - Cytology NEG

Lung markings are present here (over-exposed)!
First Case

The next step in managing this patient is:
A. Perform a large volume thoracentesis
B. Place an indwelling pleural catheter
C. Thoracoscopy with pleural biopsy
D. Perform a bronchoscopy
E. B and D
Pleural Effusions from “trapped lung”
Pleural Fluid Origins: *Trapped Lung*

- **Parietal**
 - NL $P_{\text{hydrostatic}}$
 - Blood Vessel
 - Pleural Space
 - Serous
 - Fluid
 - $P_{\text{pleura}} = -25 \text{ cmH}_2\text{O}$

- **Visceral**
 - NL $P_{\text{hydrostatic}}$

NL

Blood Vessel

Pleural Space

Serous

Fluid

$P_{\text{pleura}} = -25 \text{ cmH}_2\text{O}$
Entrapped v. Trapped Lung

Manometry

Normal

Entrapped Lung

Trapped Lung

PRESSURE (cm H2O)

VOLUME (ml)
Causes of TRANSUDATIVE Pleural Effusions

• Congestive Heart Failure (40%)
• Cirrhosis
• Nephrotic Syndrome
• Trapped Lung (also can be exudative)
• Pulmonary Embolism (also can be exudative)
• Myxedema
• Urinothorax
• CSF leak
Causes of EXUDATIVE Pleural Effusions

- Parapneumonic / empyema (25%)
- Malignancy (12%)
- PE (10%)
- Tuberculosis
- Pancreatitis
- RA, SLE

- Uremia
- Post-cardiac injury / surgery
- Asbestos
- Chylothorax
- Intra-abdominal Abscess
- Meig’s Syndrome
Diagnostic Evaluation of Pleural Effusions

• Identifying the etiology of a pleural effusion requires:
 • CLINICAL information
 – To suggest an underlying diagnosis
 • Radiographic findings
 – Infiltrate, mass, lymphadenopathy
 • Pleural fluid analysis
 – Transudate v. Exudate ->
 • Cell count and differential, cytology, culture, etc....
Pleural Effusions: When to Tap

Pleural effusion

Substantial fluid? (≥10 mm thick on lateral decubitus CXR)

No
Observation

Yes
CHF?

No
Thoracentesis

Yes
Asymmetry, chest pain, fever?

Yes -> Thoracentesis

No
Diuresis, Observation

Effusion > 3 days -> Thoracentesis
The Value of the Lateral Film

Up to 500 ml can be “hidden” on an AP film

Effusion!
Large Volume Thoracentesis: OK to remove > 1 liter??

185 pts with 1L -> 3.5L removed

- 1 pt (0.5%) had symptomatic re-expansion pulmonary edema (RPE) [1.4L removed]
- 4 pts (2.2%) had radiographic RPE only
- RPE did not correlate with pleural fluid volume, end-expiratory pleural pressure, or symptoms during the procedure
- No clear guidelines, but RPE is rare and strict adherence to limiting thoracenteses to 1L is not supported by data

Transudate or Exudate?:
Light’s criteria

- Distinguish transudate from exudate

- One or more of the following defines an exudate:
 - Pleural fluid (PF) protein : Serum protein > 0.5
 - PF LDH : Serum LDH > 0.6
 - PF LDH > 2/3 upper limit normal serum LDH
Transudate or Exudate?

• If you truly suspect a transudate (e.g. a “diuresed” CHF-related effusion), check...

 – Serum - PF protein > 3.1 gm/dL
 – Serum– PF albumin gradient > 1.2 gm/dL

 – Then = TRANSUDATE

Transudate or Exudate?

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity*</th>
<th>Specificity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF: serum protein > 0.5</td>
<td>98%</td>
<td>83%</td>
</tr>
<tr>
<td>PF: serum LDH > 0.6</td>
<td>86%</td>
<td>84%</td>
</tr>
<tr>
<td>PF LDH > 2/3 nl serum</td>
<td>90%</td>
<td>82%</td>
</tr>
<tr>
<td>Serum-PF alb < 1.2</td>
<td>87%</td>
<td>92%</td>
</tr>
</tbody>
</table>
37 year old woman with:

- 2 months of dry cough
- Dyspnea on exertion
- R anterior pleuritic chest pain
Pleural Fluid Analysis

Pleural Fluid:

LDH: 459

pH: 7.37

glucose: 72

WBC: 900 Diff: 27N 28M 40L 5 mesothelial cells

RBC: too numerous to count

Fluid hematocrit: 22%
Grossly Bloody Pleural Fluid

<table>
<thead>
<tr>
<th>Fluid Hematocrit</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td><1%</td>
<td>Not significant</td>
</tr>
<tr>
<td>1-20% (hemorrhagic process)</td>
<td>Cancer >> PE > Trauma > empyema</td>
</tr>
<tr>
<td>20 – 50%</td>
<td>Hemorrhagic process v. Hemothorax</td>
</tr>
<tr>
<td>>50% circulating HCT</td>
<td>Hemothorax</td>
</tr>
</tbody>
</table>
Spontaneous Bloody Effusions and Hemothorax

BLOODY Pleural effusion
- No Trauma
- No Procedures

Pleural Fluid HCT < 50% of peripheral blood HCT

Etiologies
- Lung Ca
- PE - pulmonary infarction
- Tuberculosis

Hemorrhagic Empyema
- Uremia
- Coagulopathy
- Mesothelioma

Pleural Fluid HCT > 50% of peripheral blood HCT (frank hemothorax)

BLOODY Pleural effusion
- No Trauma
- No Procedures
Spontaneous Bloody Effusions and Hemothorax

Etiologies
- Lung Ca
- PE - pulmonary infarction
- Tuberculosis
- Hemorrhagic
- Uremia
- Coagulopathy
- Mesothelioma

BLOODY Pleural effusion
- No Trauma
- No Procedures

- Pleural Fluid HCT < 50% of peripheral blood HCT
- Pleural Fluid HCT > 50% (frank hemothorax)

CT Angiogram or MRA

NON-vascular
- Endometriosis
- Pleural Metastases
- Angiosarcomas
- Thymoma / Thymic cysts
- Chest wall
- Bony anomaly "Exostoses"
Spontaneous Bloody Effusions and Hemothorax

BLOODY Pleural effusion
- No Trauma
- No Procedures

- Pleural Fluid HCT < 50% of peripheral blood HCT
 - **Etiologies**
 - Lung Ca
 - PE - pulmonary infarction
 - Tuberculosis
 - Hemorrhagic Empyema
 - Uremia
 - Coagulopathy
 - Mesothelioma

- Pleural Fluid HCT > 50% of peripheral blood HCT (frank hemothorax)
 - CT Angiogram or MRA
 - Pleural Fluid HCT > 50% of peripheral blood HCT (frank hemothorax)

Vascular Anomalies
- AVM's
- Neurofibromatosis
- Aneurysms (intercostal, IMA)
- Endometriosis
- Pleural Metastases
- Angiosarcomas
- Thymoma / Thymic cysts

NON-vascular
- Chest wall
- Bony anomaly
- "Exostoses"
Back to the case...

- R VATS with pleural biopsy and wedge resection
 - hemothorax > 1 L
 - Endometrial tissue
 - Lung

- **Thoracic Endometriosis**
Another Case!

- 72 year old man with 2 days of
 - Intense R sided chest pain, dry cough, chills and dyspnea
- Exam
 - T 100.9, Decreased BS right base
- Labs
 - Serum WBC 15K (80 poly’s, 10% bands)
- Lateral Decubitus CXR revealed a flowing moderate-sized effusion
- Blood cultures were obtained and Antibiotics started
Quick Quiz

• Thoracentesis ->
• Pleural Fluid Analysis
 – Sero-sanguinous
 – PF protein 3 (serum 4)
 – PF LDH 800 (serum 300)
 – PF pH 7.18
 – Gram stain and cultures NEG

The most likely infection in this case is:

A. S. pneumoniae
B. S. milleri
C. H. influenza
D. S. aureus
E. A or C
Microbiology of COMMUNITY-Acquired Pleural Infections

- Strep Milleri 32%
- S. Pneumoniae 13%
- Staphylococci 11%
- Anaerobes 16%
- Other 18%
- H. Flu 3%
- Enterobacter 7%
Quick Quiz

• Thoracentesis ->
• Pleural Fluid Analysis
 – Sero-sanguinuous
 – PF protein 3 (serum 4)
 – PF LDH 800 (serum 300)
 – PF pH 7.18
 – Gram stain and cultures NEG

The next step in managing this effusion is:

A. Antibiotics and close observation, including daily CXRs
B. Thoracentesis to drain the pleural space
C. VATS decortication
D. Chest tube drainage +/- fibrinolytics to the pleural space
E. A or D
COMPLICATIONS of Parapneumonic Effusions:

why drain?

- Chronic Pleural Infection
- Secondary Lung Abscess
- Bronchopleural Fistula
- Empyema Necessitans
 - Pleuro-cutaneous fistula

- Pleural Fibrosis
 - Lung entrapment →
 - Impaired lung function →
 - Surgical decortication
<table>
<thead>
<tr>
<th>Pleural Anatomy</th>
<th>Fluid Micro</th>
<th>Fluid pH</th>
<th>Risk of Poor outcome</th>
<th>Drain?</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 mm on Lat decub</td>
<td>N/A</td>
<td>N/A</td>
<td>LOW</td>
<td>No</td>
</tr>
<tr>
<td>CXR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleural Anatomy</td>
<td>Fluid Micro</td>
<td>Fluid pH</td>
<td>Risk of Poor outcome</td>
<td>Drain?</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td><10 mm on Lat decub CXR</td>
<td>N/A</td>
<td>N/A</td>
<td>LOW</td>
<td>No</td>
</tr>
<tr>
<td>< ½ hemithorax AND -></td>
<td>GS and Cx NEG AND -></td>
<td>pH > 7.20</td>
<td>LOW</td>
<td>No, BUT need to follow</td>
</tr>
<tr>
<td>> ½ hemithorax, loculated, thick pleura Or -></td>
<td>GS or Cx + Or -></td>
<td>pH < 7.20</td>
<td>Moderate / High</td>
<td>YES</td>
</tr>
</tbody>
</table>
Treating Complex Parapneumonic Effusions / Empyema

• Definitive Pleural Drainage
 – Commonly via chest tube
 – Serial thoracenteses an alternative, but not well-studied

• Pleural Catheter + Fibrinolytics
 – Variably used and STILL requires individual assessment
 – Multicenter Intrapleural Sepsis Trial (MIST-1)
 • Pleural saline v. streptokinase
 • Streptokinase did NOT improve survival, need for surgical intervention, Chest CT appearance, or lung function
 • Additional fibrinolytic trial (s)....
Small Drainage Catheters + Fibrinolytic + DNA’se Treatment of Empyema

 – Pleural saline v. tPA v. DNAse v. tPA + DNAse x 3 days
 – tPA + DNAse group had decreased need for:
 • Surgical intervention (4% compared to 39% for placebo); and...
 • An improved CXR by day 7 and 30

Important considerations with intra – pleural tPA
~1.8% risk of pleural hemorrhage
Markedly simulates pleural fluid production (up to 6-fold)
Contraindicated in presence of broncho-pleural fistula
Treating Complex Parapneumonic Effusions / Empyema

• Surgical Decortication
 – Indicated if little clinical or radiographic improvement after 1 week of antibiotics and chest tube drainage +/- pleural lytics
 – Required in ~30% of cases
 – VATS adequate in 60% of these cases

• Appropriate Antibiotics
 – Duration uncertain: 2 weeks minimum, but as long as necessary for drains to be removed
 – Sometimes longer courses required for atypical pathogens (e.g. actinomyces) or in cases of prolonged pleural drainage
A Surprise Case...

- 53 year old man with hypertension, atrial fibrillation presents with: 2 months of acute on chronic exertional dyspnea

- 3+ pre-tibial lower extremity edema

- Orthopnea & paroxysmal nocturnal dyspnea, worse than baseline
Case CXR
Thoracentesis

- **Removed:** 1200 cc
- **WBC:** 1650 \((P_{14} L_{83} M_{2}) \)
- **pH:** 7.57
- **Glucose:** 262
- **Total Protein:** 3.9
- **Albumin:** 2.3
- **LDH:** 159
- **Gram stain/culture:** negative
- **Cytology:** negative
- **Cholesterol:** 77

Triglycerides: 1,276
Chylothorax?

Pleural Fluid Triglyceride level (mg/dl)

- >110 Chylothorax
- 50-110 Lipoprotein analysis
- <50 PSEUDO-Chylothorax (likely chronic exudate)

+ Chylomicrons -> CHYLOTHORAX

Traumatic

Chest trauma
Thoracic surgery

Non Traumatic

Lymphoma, solid tumors, chest XRT
Histoplasmosis, MTB, Sarcoid
Chylous ascites
LAM, yellow nail syndrome, Amyloid
L subclavian DVT
Filarialisis
Pseudo - Chylothorax

• **Pseudo - Chylothorax:** *Cholesterol*, phospholipid Complexes = from:
 Cell degradation, chronic exudate, empyema

 Cholesterol > 250 mg/dL
 + cholesterol crystals (rhomboid)
 TG_{fluid} LOW

• **Chylothorax:**
 TG_{fluid} > 110mg/dL
 TG_{fluid} > TG_{serum}
 Cholesterol fluid < 200 mg/dL
 + chylomicrons
Chyle Loss Increases Mortality

Fat
Vitamins A, D, E, K
Proteins
Immunoglobulins
Lymphocytes

Malnutrition
Immunosuppression

17-35% mortality (limited data)
4.5-fold ↑ risk of death in surgical patients

Fat
Vitamins A, D, E, K
Proteins
Immunoglobulins
Lymphocytes

Malnutrition
Immunosuppression

17-35% mortality (limited data)
4.5-fold ↑ risk of death in surgical patients
Management

↓ Chyle Flow
- No short- or long-chain TG intake
- Octreotide or Somatostatin

Maintain Nutrition
- Medium-chain TGs → enter portal circulation directly
- Total parental nutrition (TPN)

Remove Chyle
- Thoracentesis
- Tube Thoracostomy
- Pleuroperitoneal Shunt
- Pleurovenous Shunt

Close Chyle Leak
- Pleurodesis
- Duct Embolization
- Surgical Duct Ligation
Exudative Effusion of Unclear Etiology

- 46 year old man with a h/o myelodysplastic syndrome, s/p an unrelated allo-stem cell transplant: complicated by cutaneous and GI graft-versus-host disease

- NOW with dyspnea and progressive right-sided pleuritic chest pain x 2-3 weeks

- No fevers/chills, known sick contacts, or recent travel

- Medications: prednisone 20 mg daily, tacrolimus, atovaquone, valganciclovir
Chest X ray
Thoracentesis

• Labs:
 – Serum: LDH 229, Total Protein 6.5, Albumin 3.7
 – Fluid: LDH 226, Total Protein 4.1, Albumin 2.7
 – Fluid: pH 7.6, Glucose 208, Amylase 12
 – Fluid: ADA 3.1 (usually > 40 U/L in tuberculous pleural effusions)

• Cultures: AFB, Fungal, Aerobic/Anaerobic, Actinomyces, Nocardia, PCP all negative

• Cytology + flow cytometry negative for malignancy
Exudative Effusion of Unclear Etiology

• Up to 20% of exudative pleural effusions have no clear etiology, even after:
 – Pleural fluid analysis from thoracentesis and
 – Thoracoscopy and pleural biopsy

• Most undiagnosed exudates are from:
 – Malignancy (including mesothelioma)
 – Chronic empyema (including atypical organisms)
 – Tuberculosis
 – Rheumatoid Arthritis / inflammatory
 – Pulmonary Embolus
 – “Diuresed” CHF
Exudative Pleural Effusion

"Borderline" Exudate

- Serum:PF Albumin > 1.2 g/dL
- Pleural Fluid NT-proBNP > 2000 pg/mL
- Consider CHF, nephrosis, cirrhosis

All Other Exudates

- NEGATIVE
 - History
 - Microbiology
 - Cytology

- Consider PE (DDIMER, PE-CT)
 - Consider TB
 - ADA > 40 U/L or
 - IFN-gamma > 140 pg/mL

- NEGATIVE

- Thoracoscopy and Pleural Biopsy
Pleural Fluid Biomarkers: new diagnostic tools for idiopathic exudates

Back to the case... evaluation for Infection

- Blood cultures negative
- 1,3 Beta D-glucan <31
- Galactomannan 0.15 (negative)
- S pneumo and Legionella Urine Ag negative
- Histoplasma and Blastomyces Urine Ag negative
- Cryptococcal Ag negative
- CMV PCR (blood) negative
- PCP (sputum) negative
Bronchoscopy, Pleuroscopy and Pleural Biopsy

Methenamine Silver Stain (MSS) 100x

Modified AFB Stain 100x
Quick FINAL Case!

• 55 yo man with subacute dyspnea
 – History: EtOH
 – Exam: Decreased BS R chest,
 + Ascites
 – Pleural fluid analysis:
 • PF protein 1.0 (serum 3.0)
 • PF LDH 100 (serum 300)

• What is the etiology of the patient’s R-sided pleural effusion?
Quick FINAL Case: Answer

• Hepatic Hydrothorax
 – Occurs in ~7% of pts with ascites
 – Usually large R effusion (80% on R)
 – Forms due to rifts in the diaphragm
 – Can accumulate rapidly
 – 20% of HH can form without ascites
 – Tap pleural + peritoneal fluid (to r/o infection
 – “SBP” - and alleviate symptoms)
 – Treat underlying ascites and cirrhosis -> often difficult...
 – TIPS can be affective for refractory HH
Hepatic Hydrothorax: follow-up

- Spironolactone, furosemide, IV Albumin, and octreotide minimally effective –

- TIPS performed and discharged on diuretic regimen

- CXR 3 months later!
Further Reading

2. Light, RW. The Light Criteria The Beginning and Why they are Useful 40 Years Later. *Clin Chest Med* 2013; 34: 21-26

5. Porcel Jose M. Pearls and myths in pleural fluid analysis. *Respirology* 2011; **16**: 44